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A MATHEMATICAL MODEL OF THE PROBLEl'l OF DIAGNOSING A THERMOELASTIC MEDIUM* 

V.A. LOMAZOV and W.V. ~~ROVSK~I 

The diagnosis problem is understood to mean the problem of determining 

material characteristics by means of information on the physical fields 

originating therein under the influence of external effects. The problem 

is from the class of inverse problems of mathematical physics /l/ and 

is solved using the model of generalized thermomechanics for weakly 

anisotropic media. As a result of the analysis of wave processes in such 

a medium, a method is developed for determining the thermoelastic 

characteristics by means of the temperature and displacement values on 

the half-space boundary. Examples of calculating specific characteristics 

are examined. 

1. We shall consider the problem of diagnosing a thermoelastic medium within the framework 

of the model of generalized thermomechanics /2/ 

qj,j + C*W + T&jQj=O, Tqi + qj= -KRij@,i* Uij,j=&Xd; WI 
eij = -$ (8i.j + uj,i), Uij = CijEzetl - @gj0, i, j, k, I = i, 2,3 

Here C, is the specific heat for constant deformation, pll = Ci#xm,a~, are the coefficients 

of linear expansion, Cfjr, are the isothermal stiffness coefficients of an anisotropic material, 

&I are the thermal conductivities, z is the heat flux relaxation time, p is the density 

(the quantities listed above are functions of the space variables x = (z,,z,,z,)),~~ are 

components of the heat flux vector, 0 = (T-TT,) is the relative body temperature, eih %I 
are the strain and stress tensors, u1 are the displacement components (these quantities are 

functions of x and the time t), and T,=wnst is the body temperature in the natural state. 

The dots denote partial derivatives with respect to time, the subscript after the comma is the 

derivative with respect to the corresponding coordinate. Summation is over repeated subscripts. 

Unlike the dynamic equations of the theory of elasticity and the non-stationary heat 
conduction equations, the generalized thermomechanics equations describe the mutual influence 

of the deformation and temperature fields and also take account of the finiteness of the heat 

propagation velocity. It is important to take these effects into account in any study of the 

qualitative behaviour of the solution. At the same time, in quantitative respects taking 

them into account does not result in any appreciable difference between the solutions and the 

solutions of the elasticity and heat conduction theories in many cases /2, 3/. 

In view of this, we will assume that the terms To&&;, rq;, f$@ are small quantities of 

the order of e (O<E< 1) and the solution of system (1.1) {q,, O,url,eIjr Ui} differs from the 

function {qj, 8". UiP* Uj'}r which is a solution of the mutually uncoupled non-stationary equations 

of the theory of heat conduction and the dynamic equations of elasticity theory, by a quantity 

0 (s) 
qi,j + C ,"@" z 0, qy + Kij”e, i” = 0, a;, j = p%y (W 

%ja = -&(U;,j f u;, ill O,j”= C&xeiz, i, j, k, 2 = i, 2,3 

Here we ass- that 1 C, - C,” I, 1 Ktj - K,,O 1, j p - p” I. f C,~H - C*j&c 1 are alsO Of the order 
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of s, while the thermoelastic characteristics Go, J&j", $1 Gin" correspond to a homogeneous 

isotropic medium. This last assumption denotes weak inhomogeneity and weak anisotropy of 

the thermoelastic medium under investigation. The slight difference between the material 

properties and the properties of a homogeneous isotropic thermoelastic medium can be caused 

by an insignificant disturbance of technology during production or be the result of the 

influence of external effects when using the piece. 

In general, even a small change in the magnitude of the material characteristics (the 

coefficients of (1.1)) for invariant initial and boundary conditions can result in a substantial 

change in the nature of the dynamic process (i.e., the solutions of (1.1)). To avert such 

situations, it is assumed in the theory of inverse problems that the assertion of a small 

change in the solution for a small change in the coefficients /4/ holds for the class of 

solutions under consideration and for the set of variations of the coefficients of the equations. 

We note that this assumption is known to be satisfied in investigations of the solutions in 

small time intervals, not least because of the continuous dependence of the solution on the 

initial conditions, which remain invariant. We will later assume that qi* = pi-qio, e* = e- 
8” 1 crif = aij - a*,“, B$ = eij - ego, ILio = u* - Idi0 are small quantities of the order of E. 

Assuming the quantities in (1.2) as well as the requisite number of their derivatives 

to be of the order of unity,anddiscarding terms of an order of smallness less than E, we 

reduce (1.1) to the form 

(1.3) 

We reduce (1.2) to the form 

C,"e" - Kij’Wy, = 0, p%;” - C’~j~~U;,~j = 0 (1.4) 
C,e = C, - C,“, Kij’ = Kij - Kiy, p” = p - p”, tZjil= CijH - Cijrc 

where by virtue of the isotropy of the basic medium, the tensor quantities K,,“, Cijkl have 

the form /5/ 

where h". p" are Lam& constants, and &, is the Kronecker delta. 

We will examine thermoelastic wave propagation in the half-space z,)O. Eqs.(l.3) and 

(1.4) are closed by 

Therefore, the 

the initial and boundary conditions 

e+,o)=(pI(x), uo~(~,o) =c~~(x), n-(x, o)= cpt(x) 0.5) 
88 tx, 0) = 0, us tx, 0) = 0, s (x, 0) = 0 

erSO (z,, z,, 0, t) = qpl fzlr x,, th ~2 h z,, 0, t) =-h h zzl t) 
@,P (Zl, z,, 0, t) = 0, u,P (2,. %r o. t) = o 

initial and boundary conditionsin the problem of thermoelastic wave 
propagation in a weakly anisotropic, weakly inhomogeneous medium, taking the connectedness 

of the deformation and temperature fields and the finiteness of the heat propagation velocity 

into account (in linearized form), will agree with the corresponding conditions for the basic 
dynamic process being considered without taking account of these effects in a basic homogeneous 
isotropic medium. 

We will consider additional data on the boundary of the thermoelastic half-space 

(1.6) 

as information obtained as a result of test experiments. 

This information will be the basis for determining the unknown thermoelastic characteristics 
of the material Cz, K.b ,J 1 PE* Gjktv hf. T, which are considered to be sufficiently smooth 
functions of the space variables. It is conceivable that several experiments will be required 
to determine all these characteristics. We shall ascribe the superscript n to quantities 

corresponding to the n-th experiment when it is necessary to emphasize this. 
We note that within the framework of the diagnosis problem, Eqs.(l.l) are non-linear 

since they contain products of the desired thermoelastic characteristics of the medium by 
the also unknown functions qi, 8, aif, tiirui describing the dynamic process in this medium. 
The passage to (1.3) and (1.4) is essentially a linearization in the small parameter e. 

Further solution of the problem will result in the appearance of differential equations 
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in the unknown thermoelastic characteristics. Boundary conditions in {T(X), pe (x), C,E (x), By,, 

K$ (x), C$kl (x)} for s,=o are necessary for their solutions; we will consider them to be 

homogeneous without loss of generality. 

2. That regime of force and temperature loading is naturally utilized in carrying out 
the experiments for which the dynamic processinthe basic homogeneous isotropic medium will 

be sufficiently simple in nature. For simplicity we shall consider just such loadings as 
will cause dynamic processes of the form 

8" = p (x)exp (--at), u" = g (x) exp (-at) 

a = const, a > 0, g (x) = g0) (x) + gtz) (x) 

which will damp out exponentially with time in the basis medium, where rotgo) = 0, div gtz) = 0. 

It follows from (1.4) that the functions p and g should satisfy equations of the type 

of the Helmholtz Eqs.(6) 

a% - craA&n = 0, a%) - cz2Ago) = 0 

C,"ap + K”Ap = 0, 00 cl = v’ (1” -+ 2~‘)/p”, ca = fp /p 

Methods of solving such equations are known /6/; consequently, we shall henceforth 
consider the functions p and g as known. 

Applying the operators div and rot to the second equation in (1.3), we reduce system 

(1.3) to a system of equations of the form 

div ue" - cl211 (div us) = div F, uE = (ule, use, uQE) (2.1) 
rot &’ - cz2A (rot uE) = rot F, F = (F,, F,, FJ (2.2) 
C,W - KOAOe = @ 

(2.3) 
Fizz - exp irat’ [a2Pegi- (CYjkfgk, I), j + (BijP), jl 

@ = exp (-at)[C2 ap + (Kij'P,j),i + aT,hjgi, 1 + aK" bP,i),ti 

We apply the operator a/at +a1 to (2.1)-(2.31, where I is the unit operator_ We obtain 

. . 
v- c12Av = 0 (2.4) 
0” - c,~Ao = 0, o = (ol, o,, 03) (2.5) 

Ceo T’ - K”AT = 0 (2.6) 

(II = div us- + a div ue, o = rot IP + u rot ue, T = 8” + a@) 

We have initial and boundary conditions for (2.4)-(2.6) 

V(X, 0) = 0 

G(x, O)=O 

v(%r %, 0, t) = h, (x1, r,, t)* v,s (51, 9, 0, t) = h* (% %ar t) 

w (21, rz:gr 0, t) = h, (G ra, 0, ~,a (51, 52, 0, t) = hi (G rsr t) 

h, = (h,,, h,,, h,,), h, = (41, hm h.,) 

T (51, ~a+ 0, t) = x1’ + act T,s blr xas, 0. t) = 0 

P-7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

where the functions h,-hh, are expressed in terms of xa.Xs and are henceforth considered 

known. 
Eqs.(2.4), (2.5) with the initial conditions (2.7), (2.8) and the boundary conditions 

(2.9), (2.10) are non-hyperbolic Cauchy problems for the wave equations that have been 

examined in detail in /7/, say. 
we consider problem (2.4), (2.7), (2.9). we represent the function v(x, t) in the form 

V(X, t) = Y (x, t) + Q (x, Q. where we have for v, 

. . 
Vl - c,~Av~ = 0 (2.12) 

Ul (x, 0) = 0, Vl k,, GD 0, t) = h, @I,. %BI t), Vl, 8 CL 9% 0, t) = 0 (2.13) 

and the function vg is such that 

. . 
% - cleAv2 = 0 2.14) 

% (x9 0) = 0, % (% xa, 0, t) = 0, %, s (51, x,, 0, t) = h!d (51, 6, t) (2.15) 

An explicit formula enabling v'(x,O) to be determined in a problem of the form (2.12) I 
(2.13) by means of the functions hl(~lrzzrt), i.e., the reduction of problem (2.121, (2.13) to 
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an ordinary Cauchy problem is presentedin/8/. The functions v,, o are determined analogously. 
Problem (2.61, (2.11) can also be reduced to a non-hyperbolic Cauchy problem for the wave 

equation. According to /9/ 

where U(x, t) is the solution of the Cauchy non-hyperbolic problem 

C," U- - K”AU = 0, - 00 <x1, x2 < 00, 0 <x3, t < 00 

u (XT 0) = 0, u h, x21 0, t) = x h Gc,, t)r u.3 (s, x,, 0, t) = 0 

The function X is found by inverting the relation 

The invertibility of relationships of this form is shown in /lo/. 

Therefore, the functions U' (x.0), 0' (x, 0), T (x,0) can henceforth be considered known. 
T'l'~so~~;~r~;at div ue” (x, 0) = u’ (x, O), rot IP” (x, 0) = o’ (x, 0), 8” (x, 0) = T (x, 0), are known, 

, the functions div F (x, 0), rot F(x, 0), 6, (x, 0), obtained on substituting the values 

div ue.* (x,0), rot ue.' (x,0), divue' (x,O),rot u~(x, 0), &' (x, 0), ee (x, 0) into (2.1)-(2.3) are also known. 
Since F (x1, x2, 0, 0)= 0 by virtue of the boundary conditions taken for the values of 

the desired thermoelastic characteristics, then the function F(x, 0) can be restored by means 
of the values of div F (x, 0), rot F (x, 0). 
of the vector-function F(x, 0) 

We note that for the restoration of three components 
a knowledge of the values of div F(x,O) and of only two 

components of the vector function rot F(x, 0) is sufficient. Therefore, as information to be 
utilized to solve the problem it is sufficient to take just two components of the vector- 

function Xs. This is, however, already seen from the very form of the information (1.6), 

where the third component Xs is not independent of the first two components and of Xa. 
We also note that for the uniqueness of the solution of the non-hyperbolic Cauchy problem 

substantially utilized here for the wave equation, it is sufficient to give the boundary value 
of the desired function not in the whole z3=~ plane but only in the domain [zl~+sa*Q r, Q= 0), 
where r i an arbitrary fixed positive number /ll/, i.e., information for the diagnosis problem 
could also be given just in this domain. The need to consider information in the whole z9=0 
plane is associated with utilization of the explicit representation from /8/. We note that 

the classical ill-posed nature of the diagnosis problem under cosideration follows from the 
classical ill-posed nature of the non-hyperbolic Cauchy problem. 

Now, using the definitions of the functions d, and F, we can write the following 

equations permitting the determination of the desired characteristics of a thermoelastic medium 

(2.16) 

(2.17) 

System (2.16)-(2.17) is obtained when utilizing one test experiment with the measurement 

of four physical quantities divu, (rotu),, (rotu,), 8 on the half-space boundary and consists 
of four equations. In the general case the number of desired thermoelastic characteristics 

of the medium is 36, consequently, nine independent tests are sufficient for their determina- 
tion. The functions g@)(s), p(“) (x) g overning the basic dynamic process for the n-th experiment 
should be independent for different n,n= 1, 2, . ..( 9. 

We note that the unknown characteristics cee,Kile,z can be determined only from equations 
of the form (2.16), the characteristics pe, CC. yh’i only from equations of the form (2.17) while 

Bij can be determined both from those and from other equations since they are in both (2.16) 
and (2.17). However, equations of the form (2.16) are algebraic in pij while terms of the 
form bij,j are in (2.17). Consequently, bij are conveniently determined from equations of 
the form (2.16), which results in the need to carry out fourteen instead of nine independent 
experiments with a measurement of the temperature on the half-space boundary. The number of 
deformation measurements on the half-space boundary can here be cut down correspondingly 

from 27 to 22. 
The boundary conditions 

that correspond to agreement between the mentioned thermoelastic characteristics of the 
investigated and basic media on the half-space boundary, can be used to close the system of 
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equations of the form (2.16) and (2.17). 

The determination of certain thermoelastic characteristics from equations of the form 

(2.16) and (2.17) can be simplified substantially by a special choice of the functions g@)(z) 
and p(")(s), i.e. by a special selection of the nature of the force and temperature loading 

during the test experiments. 

We illustrate this by the example of the determination of the unknown thermal volume 
expansion coefficients t?,ij. We will consider six test experiments characterising just the 

force loading, i.e., A(") (2) = 0, gi(n) (z) = Gi(") (2). i = i, 2, 3, R = 1, 2, . . ., 6. In making these experiments 
we limit ourselves to temperature measurement on the half-space boundary. We then obtain 
from equations of the form (2.16) 

0(x, 0); i, j = 1, 2, 3; n =l, 2, .., 6 

whichmeansthat six independent components of the tensor fiij are determined from a system of 
six linear algebraic equations. The sufficient condition for this system ot be solvable will 

be 
det&.J#O, Akl = G$ + (i - LY~~)G~Z‘;; k, 2 = f, 2, . . . . 6 

(L i) = (1. Q. (i. 31, (1: 3), (2.3). (3. 3), (3.3) 

An assumption about the possibility of conducting a sufficiently large number of test 

experiments simplifies the problem still more. Then the partial derivatives of the unknown 

thermoelastic characteristics present in equations of the form (2.16) and (2.17) can be 

considered as separate desired functions. Therefore, the number of desired functions is 

increased substantially, but then these unknown functions are related by an linear system of 

algebraic equations. Such a formulation of the problem requires no boundary conditions in the 

unknown thermoelastic characteristics of the medium, however, after the problem has been solved 
it is necessary to verify whether some of the functions found are actually partial derivatives 

of others as had been assumed. In addition, confirmation of the correspondence between the 

thermoelastic characteristics of the material obtained during solution of the diagnosis problem 
and their physical meaning is necessary. 

3. We will consider a case in detail, when the external effect changing the thermoelastic 

characteristics of an initially homogeneous and isotropic material is such that the change 

in these characteristics depends only on the distance to the half-space boundary, i.e., on 

the coordinate za. We also assume that the external effect under consideration would result 

in weak inhomogeneity of the material while conserving its isotropy. 

In this case it is best to examine one-dimensional dynamic processes (dependent only on 

the time t and one space coordinate x3). Eqs.cl.3) describing the dynamic processes in the 

material in the general case are now simplified 

ceVY' - KY& = - C,W. + (Ke6, 90). s - To@;. 3 - K” (+,~?,a (3.1) 

p”uy - $u~,~ = - peu;” + (pz&& i = I,2 (3.2) 

p”uB” - E”&, = - pW” + (E”z&),, + (pn3 (3.3) 

while the number of desired thermoelastic characteristics is reduced to seven Gee, Ke, T, b, pe, 
p, Ee = A.8 + 2p”. We will show how the density p = p"+ pe and the elastic modulus E= h+ 

2p = E”+ EL are determined. 
We consider two force loading regimes corresponding to two basic dynamic processes 

u;(l) = exp (_ a++ ), Ll;(l)__;(l)=o, eYn=o 

% ‘(2) = exp (_& -$-x3 ), p=p=o, 0w=O 

Cl = (E"/p")'$ al, a, >O, a,# aa 

Then, in conformity with the above algorithm, the dynamic processes in a weakly 

inhomogeneous medium are described by the problems 

p"vc"Y. - E"Vy:, = 0, V(k)ll=O=O, v!:'lx,=+,= 0 (3.4) 

VW Ix,* = X(k)’ + a&” = dk (t) 

VW = u;(k). + a&(“‘), &(“’ Is+, = X’*‘(t), k = 1, 2 

Exactly like problem (2.121, (2.13) considered in the general case, problems (3.4) refer 

to a type ofnon-hyperboliccauchy problem for the wave equation. They are solved considerably 

more simply in the one-dimensional case under consideration than in the three-dimensional 

case since they can be reduced to ordinary Cauchy problems by a simple renotation interchanging 

the places of the time and space variables. Using the D'Alembert formula, we obtain 
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V(“) = I/* [da (t - z&r) + d& (t + s,/c,)l where the functions dk (t) are extended in an antisymmetric 
manner to the domain t<o. It therefore results that WeIt,, = dk’ (s&J. 

Later following the general algorithm of the passage to differential equations in the 
thermoelastic characteristics, we obtain 

We solve this system of equations taking the condition EeIx,=o=O into account. We find 

The dependence between ~1, x9 and the thermoelastic characteristics is illustrated in a 
simple numerical example. To do this, we reduce (3.3) to dimensionless form by means of the 
formulas 

As the basic dynamic processes we take processes with the parameters %=%,+=I and we 
consider the information obtained from experiment to have the form 
25) +exp(-3f)), x'"' = 0. 

x0) = 0.01 (esp(--q- 2exp (- 
The values c= i+-p,B=l+ E8 are presented in Fig-l. Note that 

7 =0,&V = 0 would be obtained for xw= x(*)=0. This would mean that the external effect 
would not result in a change in the density and the modulus E. 

Fig.1 Fig.2 @ 

The algorithm to determine the Lam6 coefficient p= p@+p' is analogous to the algorithm 
considered to determine E. Only now (3.2) is taken as basis in place of (3.3), and since the 
function p* has already been found, it is sufficient to conduct one test experiment with the 
basic dynamic process of the form 

u1 '@) = exp (-et - a+& I&;(") =II;o) GO, e'(J) GO 

fP=lGX @S>O 

We have Use&, =x(3)(:) as the information obtained from this experiment. 

Performing the same computations as in the example considered for determining E",p", we 
obtain 

The results of a numerical computation (after an analogous reduction to dimensionless 
form) are presented in Fig.1 for (I*= 1, x@) = 0,01 (2 exp (A) - 3exp (-26)+ exp(-&F).Here j = 4 + p*/p". 

The thermoelastic characteristics c,~,K~,~ will be sought by using experiments with 
temperature loading of the half-space boundary. We consider three basic dynamic processes 
for their determination 
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and as information obtained from experiment we take 

@E(R) 1, ~ = r@)(t), 

8@%**+ 

n = 4, 5 

z.z $6) (t) =o,i (exp {- F) - el;y [- 2t')) 

It is assumed that the temperature is already reduced to dimensionless form by the 
fOIXIUh 8=8/T, but the bar is eliminated here and henceforth. 

In this case, using (3.1) we obtain three equations to determine C,", Ke,, 

KYt, = 0,1 (cos (2s,) - co9 13) 

The results of a numerical computation are presented in dimensionless form in Fig.2. 

To determine the volume temperature expansion, coefficient 6 we consider a basic dynamic 
process of the form 

Q0(7) = 0, u;(7) = I&i(') =u, ,"(T) = erp(-. F - *&,) 

and we take as information 

~e(;)l**=,=~(7)(~)~0,2~~~~i~~~+~~~(-;ii) 

The algorithm to determine fi is exactly analogous to the algorithm to determine C,"_ Be,r. 
Only in the last stage does the problem reduce not to a system of ordinary differential 
equations but to one algebraic equation since only the function $ itself is in (3.1) and not 
its derivative. The function $, reduced to dimensionless form by the formula @= @(C,'T&l, 
is shown in Fig.2. 

Note that seven functions ~(~)(t)(n= I,..., 7) of one variable are also required in addition 
to determine seven unknown functions (thermoelastic characteristics) of one variable (the 
spatial coordinates 2%). If x'"'(t)=0 (n= 1,...,7), then this means that substantial changes 
in the thermoelastic properties of the material would not occur, and the initial model of a 
homogeneous isotropic medium can be used to describe the dynamic processes therein. 
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